
ABSTRACT

LIKELIHOOD RATIO CONFIDENCE BANDS FOR SURVIVAL AND
RELATED FUNCTIONS FROM CENSORED TWO-SAMPLE

LOCATION-SCALE FAMILIES

by
Kristian Nestor

Two-sample location-scale refers to a situation in which a pair of random variables

are linearly related to a base random variable that has mean 0 and variance 1. Using

a formulation that leverages the location-scale structure, a plug-in likelihood ratio

(LR) method is employed to obtain improved simultaneous confidence bands (SCBs)

for the base survival function. The plug-ins are the estimated means and standard

deviations of the two samples. Because of the plug-ins, the scaled log LR is now

indexed by estimated parameters, making the large-sample study challenging. Using

empirical process theory, the indexing by estimated parameters is addressed. The

large-sample distribution of the scaled log LR is in an intractable form, which makes

computation of the critical values difficult. Two bootstrap schemes are deployed

to obtain the thresholds for SCB construction. Two algorithms are proposed for

computing the SCBs. The SCBs are shown to have correct empirical coverage and

the relative reduction in the average enclosed areas over the nonparametric SCBs is

considerable.

The proposed approach advances the computation of LR SCBs for the difference

or the ratio of survival functions, and vertical quantile comparison functions. It is

expected that the SCBs would be considerably tighter and hence more informative

than those obtained through the nonparametric approach. These will be the focus of

continuing research and will be reported as soon as they are completed.
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CHAPTER 1

INTRODUCTION

This research is concerned with a study of the effectiveness of some survival
analysis techniques that will be introduced and will be tailored to bridge the gap
in estimation when there are additional imposed structures. It is well understood
that the methods that operate under fully nonparametric specifications would require
finer adaptations to take advantage of additional structures, leading to more efficient
methods. It is the aim of this research to bring into sharper view the existence
of improved likelihood ratio (LR) tailored simultaneous confidence bands (SCBs)
for survival functions, difference of survival functions, ratio of survival functions,
vertical quantile comparison (VQC) functions, and other important measures, under
the framework of two-sample location-scale (LS).

Two-sample LS models have the property that two random variables, when
standardized, have the same distribution, which we shall call the base distribution.
Adapting the LR approach by incorporating the LS structure into the estimations
would lead to improved procedures for censored data. In this research, the overarching
goal is to obtain improved SCBs for a wide variety of parameters built on survival or
quantile functions, their composition, difference or ratio.

Let S be a survival function. Thomas and Grunkemeier (1975) devised an LR
method of constructing pointwise confidence intervals (PCIs) for S(t) from censored
data. It is a test-based approach that inverts the LR to obtain PCIs and works as
follows. The nonparametric likelihood, expressible as a function of the unknown S(t),
is parameterized via discrete hazards. The maximum likelihood estimates (MLEs) of
the discrete hazards, when plugged into a product integral representation, yields the
nonparametric maximum likelihood estimator (NPMLE), the time-honored Kaplan–
Meier (KM) estimator of the survival function, see, for example, Kalbfleisch and
Prentice (2002). The KM estimator is plugged into the nonparametric likelihood,
yielding a baseline measure that constitutes the denominator of the LR. For the
numerator of the LR, one substitutes the maximizer of the likelihood subject to a
constraint that the survival function at a specified time point (say t0) would be a
specified number (say p, where 0 < p < 1). That is, S(t0) = p is the constraint,
which is the null hypothesis. Any number of discrete survival functions supported
on the uncensored times may be out there. A subset of those would satisfy the null
hypothesis. The Lagrange Multiplier (LM) method permits obtaining the survival
function among this subset that maximizes the likelihood. The MLEs of the discrete
hazards in this case depend on the unknown LM and, hence, the maximizing survival
function and, in turn, the numerator of the LR will also be a function of the LM. The
null hypothesis would be accepted for high values of the LR (close to 1). To produce
a string of accepted numbers p, however, an uncountable number of null hypotheses
will have to be tested.

There is a way out of this difficulty. The log of the LR scaled by the factor −2
is, in its final compact form, a function of the data and the LM. It is 0 when the LM is

1



0 and is decreasing for negative values and increasing for positive values. The insight
that it can be approximated by a chi-squared distribution with 1 degree of freedom
is an important one. There are two LM values for which the scaled log LR equals the
upper α quantile of a chi-squared distribution with 1 degree of freedom. These are
the lower and upper limits for the range of LM values for which the null hypothesis
would not be rejected. It follows that, plugging the two values of the LM into the
product integral form for the survival function, one obtains two limits within which
bracket the true survival function at t0 will be included with 100(1−α)% confidence.
The Brent’s algorithm can be used to obtain the aforementioned two LM values.

Li (1996) derived the asymptotic distribution of the scaled log LR. It is, as
Thomas and Grunkemeier (1975) concluded, chi-squared with 1 degree of freedom. Li
(1996) gave a rigorous justification for heuristic arguments in the literature concerning
Taylor expansion of the log LR. He derived large-sample rates for the LM estimate,
which were crucial for the Taylor expansion of the scaled log LR leading to its
asymptotic distribution. Li’s (1996) formal approach identified a comprehensive road
map for deriving SCBs for survival functions and functionals thereof, as well as SCBs
for a host of related measures such as a difference or a ratio of two survival functions.

Hollander, McKeague, and Yang (1997), henceforth HMY, made a fundamental
contribution that guides the construction of SCBs. They extended the approach
of Thomas and Grunkemeier (1975) to initiate the provision of SCBs for survival
functions. The survival function at t replaced the number p and the scaled log LR was
framed as a function of S and its evaluating point t. The critical value for computing
the two LM values were obtained from the supremum of a Brownian bridge process.
Computation of their SCBs, over regions excluding the lower end point of zero would,
however, require reliance on special-purpose tables, see Subramanian (2016). The
bootstrap, therefore, would offer a feasible alternative.

HMY’s technique was further applied to derive SCBs for quantile functions (Li,
Hollander, McKeague, and Yang, 1996). McKeague and Zhao (2002) proposed SCBs
for the ratio of survival functions. McKeague and Zhao (2005) proposed further
extensions and derived LR SCBs for differences and ratios of linear functionals of
cumulative hazard functions. McKeague and Zhao (2006) applied the LR method
and proposed width-scaled SCBs.They were derived by scaling the LR PCIs, using a
data-driven inflation factor, around the NPMLE of the survival function, that is, the
KM estimator. The approach improved the stability of the SCBs, especially in the
tails.

For LR SCBs of D0(t) = S1(t)−S2(t), the difference of two survival functions, a
strikingly novel contribution merits deeper consideration. Treating S2(t) as a nuisance
parameter η, Shen and He (2005) framed the maximization in terms S1(t) = η +
D0(t) and S2(t) = η. They derived the log LR which is a function of two Lagrange
multipliers and proved the existence of an η that maximized the LR. The algorithm
for computing the SCBs for the true difference D(t) was not given, however.

Semiparametric random censorship models (SRCMs), proposed by Dikta (1998)
permit improved LR SCBs around a semiparametric survival function estimator.
When the model for the conditional non-censoring probability given the event time is
specified correctly, the semiparametric survival function estimator is asymptotically
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more efficient than the KM estimator (Dikta, 1998). This fact has been exploited to
derive SRCM LR SCBs for survival functions (Subramanian, 2016), and the difference
of survival functions (Ahmed and Subramanian, 2016).

Chen, Tracy, and Uno (2021) constructed SCBs for survival functions and
difference of hazard functions that were derived from a related optimization problem
with local time processes. Their “OptBand“ formulated the problem as an
optimization task to find SCBs that minimize the enclosed area between them for
a given coverage level.

Hall and Wellner (1984) and Nair (1984) derived two classical SCBs using the
weak convergence of a pivotal quantity to a Brownian motion or Brownian bridge,
which they then inverted to obtain SCBs for survival functions. Parzen, Wei, and
Ying (1994) introduced a perturbation resampling method to compute critical values;
Parzen, Wei, and Ying (1997) applied it to the two-sample problem.

We propose two sample LS-based SCBs for survival functions, their difference,
ratio, as well as SCBs for vertical quantile comparison functions. We show that
nonparametric SCBs can be effectively adapted to the LS framework. The proposed
methods exhibit superior performance in terms of some evaluation metrics such as
estimated average enclosed areas and estimated average widths. For each task we
provide a comprehensive algorithm that describes how threshold values for inverting
the LR are obtained and how the SCBs are computed.
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CHAPTER 2

SIMULTANEOUS CONFIDENCE BANDS FOR SURVIVAL
FUNCTIONS

2.1 The Location–Scale (LS) Framework
Suppose that

Xi = µi + σiZ, i = 1, 2,

where Z is a random variable with distribution function F , mean 0, and variance 1.
We refer to Z as having the baseline distribution F (for example, Z may be standard
normal). The parameters µi and σi denote the mean and standard deviation of Xi,
respectively. Hence,

Fi(x) = F

(
x− µi

σi

)
, i = 1, 2. (2.1)

The distributions F1 and F2 are said to belong to an LS family with baseline
distribution function F . LS models are widely used in medical research, where
outcome distributions are critical for evaluating treatment efficacy and for supporting
clinical decision-making. Differences in disease progression, for instance, often appear
as shifts and/or scales in health-related outcome distributions such as blood pressure,
time to an event, or biomarker levels.

LS models are particularly useful in survival analysis, as they naturally
accommodate heterogeneity between patient groups. In the context of accelerated
failure time (AFT) models, the log-survival times are assumed to follow an LS family
(e.g., log-normal or log-logistic), allowing clinicians to interpret treatment effects as
multiplicative changes in median survival [17].

2.2 Censoring and Estimation under the LS Model
Let Xij (j = 1, 2, . . . , ni; i = 1, 2) denote the failure time of the j-th individual

in the i-th sample, and let Cij be the corresponding censoring time. We observe the
pairs (Z̃ij, δ̃ij), where

Z̃ij = min(Xij, Cij), δ̃ij = 1(Xij ≤ Cij), j = 1, . . . , ni; i = 1, 2.

Let Ŝi be the KM estimator of Si, the survival function of Xi. Let ∆Ŝi(t) be the
jump of Ŝi at t. The estimated means and variances are

µ̂i = −
ni∑
j=1

δ̃ijZ̃ij ∆Ŝi

(
Z̃ij

)
; ψ̂i = −

ni∑
j=1

δ̃ijZ̃
2
ij ∆Ŝi

(
Z̃ij

)
; σ̂2

i = ψ̂i − µ̂2
i .

Let the notional standardized variable U0
ij and its concomitant censoring V 0

ij be

U0
ij =

Xij − µi

σi
∼ F, V 0

ij =
Cij − µi

σi
.
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The proposed research leverages the LS structure to pool the two samples from
which the KM estimator of S(t) = 1−F (t) is computed. That pooling does not create
a conflict in producing the correct estimator is borne from the following argument,
when the means and standard deviations are known.

Define the notional variables Z0
ij = min(U0

ij, V
0
ij) and δ0ij = I(U0

ij ≤ V 0
ij). Let

Ḡi(t) be the survival function of the concomitant censoring variable V 0
i = (Ci−µi)/σi.

Let W 0 be the pooled minimum and let ξ be the group membership indicator with
P(ξ = 0) = α. We continue to let δ0 be the (concomitant) censoring indicator. Then

P (W 0 > t) = P (W 0 > t|ξ = 0)α + P (W 0 > t|ξ = 1)(1− α)

= P (Z0
1 > t|ξ = 0)α + P (Z0

2 > t|ξ = 1)(1− α)

= S(t)
{
αḠ1(t) + (1− α)Ḡ2(t)

}
. (2.2)

Likewise,

P(W 0 ≤ t, δ0 = 1) = P(W 0 ≤ t, δ0 = 1|ξ = 0)α + P(W 0 ≤ t, δ0 = 1|ξ = 1)(1− α)

= α

∫ t

−∞
Ḡ1(s) dF (s) + (1− α)

∫ t

−∞
Ḡ2(s) dF (s). (2.3)

We then have that∫ t

−∞

dP(W 0 ≤ s, δ0 = 1)

P(W 0 > s)
=

∫ t

−∞

(αḠ1(s) + (1− α)Ḡ2(s)) dF (s)

S(s)(αḠ1(s) + (1− α)Ḡ2(s))
= Λ(t),

where Λ(t) is the cumulative hazard function associated with F . These calculations
indicate that Λ(t) and S(t) can be estimated by the (notional) Nelson–Aalen estimator
and the KM estimator respectively from the pooled standardized notional data
{W 0

j , j = 1, . . . , n}, where n = n1 + n2.
To enable transition from notional to the actual, let Uij and Vij be the estimated

counterparts of U0
ij and V

0
ij respectively, defined by

Uij =
Xij − µ̂i

σ̂i
, Vij =

Cij − µ̂i

σ̂i
,

Let Wj, j = 1, . . . , n be the pooled minimum of Uij and Vij, and let δ be the
concomitant censoring indicator. On the basis of W1, . . . ,Wn, form the counting
process Nθ̂(t) =

∑n
j=1 I(Wj ≤ t, δj = 1) and the “at-risk” process Yθ̂(t) =∑n

j=1 I(Wj ≥ t). Note that θ̂ is embedded in the Wj’s. Write ∆Nθ̂(t) = Nθ̂(t) −
Nθ̂(t−). The KM estimator from the pooled data is

Ŝθ̂ (t) =
∏
s≤t

(
1−

∆Nθ̂(s)

Yθ̂(s)

)
. (2.4)

Note that Ŝθ(s) ≡ Ŝ(s), the KM estimator based on the notional data W 0
j , j =

1, . . . , n. From Major and Rejtö (1988) and the functional delta method (Theorem
II.8.1. of Andersen et al. (1993), it follows that

n1/2(Ŝ(t)− S(t)) = −S(t)n−1/2

n∑
l=1

I
(1)
l (t) + oP(1), (2.5)
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where

I
(1)
l (t) =

I(W 0
l ≤ t, δ0l = 1)

P(W 0 > W 0
l )

−
∫ t

0

I(W 0
l > y)dΛ(y)

P(W 0 > y)
. (2.6)

Let f be the density of F . Nestor and Subramanian (2025) derived a large-
sample representation for Ŝθ̂(t) − S(t). We review their results here. For cadlag
functions α(s) and β(s), let

Dt(α, β) =

∫ t

−∞
dα(s)/β(s).

Let CGi
(t) = Dt(ΛGi

, 1−Hi), where ΛGi
is the cumulative hazard function associated

with the censoring distribution function Gi. Then

n1/2(µ̂i − µi) = κ
−1/2
i

(
n
−1/2
i

ni∑
j=1

I
(2)
ij

)
+ oP(1), (2.7)

n1/2(σ̂i − σi) =
κ
−1/2
i

2σi

{
n
−1/2
i

ni∑
j=1

(
I
(3)
ij − 2µi I

(2)
ij

)}
+ oP(1), (2.8)

where

I
(2)
ij =

{
Z̃ijβi0(Z̃ij)δ̃ij − µi

}
+

1− δ̃ij

1−Hi(Z̃ij)

∫ ∞

Z̃ij

w dFi(w)

−
∫ ∞

−∞
CGi

(Z̃ij ∧ w)w dFi(w), (2.9)

I
(3)
ij =

{
Z̃2

ijβi0(Z̃ij)δ̃ij − ψi

}
+

1− δ̃ij

1−Hi(Z̃ij)

∫ ∞

Z̃ij

w2 dFi(w)

−
∫ ∞

−∞
CGi

(Z̃ij ∧ w)w2 dFi(w). (2.10)

Note that E(I(2)ij ) = 0 and E(I(3)ij ) = 0 for j = 1, . . . , ni and i = 1, 2.

From their Proposition 1, Â(t) := Ŝθ̂(t) − S(t) admits the large sample
representation

Â(t) = Ŝ(t)− S(t) +
α

σ1
f(t) {(µ̂1 − µ1) + t(σ̂1 − σ1)}

+
1− α

σ2
f(t) {(µ̂2 − µ2) + t(σ̂2 − σ2)}+ oP(n

−1/2). (2.11)

The resulting large-sample representation for Â(t), obtained by plugging repre-
sentations given by Eq. (2.5), Eq. (2.7) and Eq. (2.8) into Eq. (2.11) yields a weak
Gaussian limit with complicated covariance structure.
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2.3 SCBs for individual survival functions under two-sample LS
As will be shown below, the estimated standardized pooled data permit the

construction of SCBs for S(t). In turn, SCBs for Si(t) can be obtained from
evaluations at time points shifted and scaled from the support points of Ŝθ̂(t). We
describe the details now.

LetD(t) = maxs≤t (∆Nθ̂(s)− Yθ̂(s)). Let Γ be the space of all survival functions
on (−∞,∞), with first and second moments 0 and 1 respectively. For 0 < p < 1, the
nonparametric LR, when θ is known, is (Thomas and Grunkemeier, 1975)

R(p, t) =
sup{L(γ) : γ(t) = p, γ ∈ Γ}

sup{L(K) : K ∈ Γ}
. (2.12)

Replacing p by K(t), where K ∈ Γ, the formula for the plug-in scaled log LR is
exactly as in HMY, but all the functions will now be indexded by θ̂, the estimated θ:

L (K(t), t) := −2 logR (K(t), t)

= −2
∑
s≤t

[
(Yθ̂(s)−∆Nθ̂(s)) log

(
1 +

λ̂θ̂(t)

Yθ̂(s)−∆Nθ̂(s)

)

− Yθ̂(s) log

(
1 +

λ̂θ̂(t)

Yθ̂(s)

)]
, (2.13)

where λ̂θ̂(t) satisfies

∏
s≤t

(
1−

∆Nθ̂(s)

Yθ̂(s) + λ̂θ̂(t)

)
= K(t). (2.14)

Eqs. (2.13) and (2.14) differ from their counterparts in HMY, because all
quantities are now indexed by estimated means and standard deviations. If those
were replaced by their true values one obtains the HMY counterparts. In particular,
λ̂θ̂(t) is a perturbed version of λ̂ in HMY. Introduce the factor

σ̂2
θ̂
(t) = n

∑
s≤t

∆Nθ̂(s)

Yθ̂(s)(Yθ̂(s)−∆Nθ̂(s))
. (2.15)

The following theorem gives a large-sample representation for L(S(t), t).

Theorem 1. With Â(t) defined by Eq. (2.11), the scaled log LR admits the large-
sample representation

L(S(t), t) = 1

σ̂2
θ̂
(t)S2(t)

{
n1/2Â(t)

}2

+ oP(1), (2.16)

uniformly for t ∈ [t1, t2] ⊂ (0, τH ].
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The proof of Theorem 1 is given in the Appendix. Our perturbed version
of the HMY scaled log LR requires empirical process theory to “smooth out“ the
perturbation; see Subsection 2.2 where it is given in detail. What emerges from the
analysis is a weak limit for n1/2(Ŝθ̂(t)−S(t)) ≡ n1/2Â(t) that is the sum of the HMY
Brownian bridge process and additional terms due to the plug-ins for µi and σi that
caused the perturbation. The asymptotic version of the supremum over t of the scaled
L(S(t), t), therefore, is the supremum over t of an intractable limiting process, which
makes it difficult to obtain thresholds needed for computing the SCBs. We employ the
bootstrap to obtain the critical values. Two algorithms, Algorithm 1 and Algorithm
2, are provided below. These differ in the way the resampling is done.
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Algorithm 1: Bootstrap LR SCBs for the base survival function I

Data: Sample Xij , Cij , failure and censoring times, respectively i = 1, 2,
j = 1, 2, · · · , ni

Result: Simultaneous confidence bands SCBi(t), i = 1, 2

1 Step 1: Estimate location and scale parameters;
2 for i ∈ {1, 2} do

3 Obtain Z̃ij = min (Xij , Cij), δ̃ij = 1 (Xij ≤ Cij) ;

4 Compute the KM estimator Ŝi(t) from (Z̃ij , δ̃ij);

5 Compute the jumps ∆Ŝi(Z̃ij);

6 Estimate µ̂i = −
∑ni

j δ̃ijZ̃ij∆Ŝi(Z̃ij), ψ̂i = −
∑ni

j δ̃ijZ̃
2
ij∆Ŝi(Z̃ij),

σ̂2i = ψ̂i − µ̂2i ;

7 Step 2: Standardize and pool samples;
8 For each sample i = 1, 2, set Uij = (Xij − µ̂i)/σ̂i and Vij = (Cij − µ̂i)/σ̂i;
9 Obtain pooled failure and censor time each of size n = n1 + n2

U = (U11, U12, · · · , U1n1 , U21, U22, · · · , U2n2)
⊤,

V = (V11, V12, · · · , V1n1 , V21, V22, · · · , V2n2)
⊤;

10 Form pooled data: Wj = min(Uj ,Vj), δj = 1(Uj ≤ Vj)), j = 1, 2, · · · , n;
11 Compute the pooled KM estimator Ŝθ̂(t) from (Wj , δj), where

θ̂ = (µ̂1, σ̂1, µ̂2, σ̂2);

12 Store ordered event (failure) times T(j), Ŝθ̂
(
T(j)

)
, Yθ̂

(
T(j)

)
, ∆Nθ̂

(
T(j)

)
,

j = 1, 2, · · · , k;

13 Compute wn(t) :=
σ̂2
θ̂
(t)

1+σ̂2
θ̂
(t)

where σ̂2
θ̂
(t) is defined by Eq. (2.15) ;

14 Step 3: Bootstrap critical value computation;
15 for b = 1, . . . , B do
16 Sample indices with replacement from pooled data to form bootstrap sample

(Z∗(b), δ∗(b));

17 Compute Ŝ
∗(b)
θ̂

(t), Y
∗(b)
θ̂

(t), and ∆N
∗(b)
θ̂

(t);

18 Solve for λ̂∗(b)(t) from
∏

s≤t

(
1−

∆N
∗(b)
θ̂

(s)

Y
∗(b)
θ̂

(s)+λ

)
= Ŝθ̂(t);

19 Evaluate test statistic L∗(b)(t) = −2wn(t)
∑

s≤t

[
(Y

∗(b)
θ̂

(s)−

∆N
∗(b)
θ̂

(s)) log

(
1 + λ

Y
∗(b)
θ̂

(s)−∆N
∗(b)
θ̂

(s)

)
− Y

∗(b)
θ̂

(s) log

(
1 + λ

Y
∗(b)
θ̂

(s)

)]
;

20 Store maxt L∗(b)(t);

21 Compute the 95th percentile of {maxt L∗(b)(t)}Bb=1 as qLRθ̂
;

22 Step 4: Construct simultaneous confidence bands;

23 for each t ∈ [Tα, T1−α], where Tα is the α− th percentiles of
{
T(j)

}n
j=1

do

24 Solve L(S(t), t) = qLRθ̂
/wn(t) for λL(t) and λU (t) using Brent’s method;

25 Compute ŜL(t) =
∏

s≤t

(
1− ∆Nθ̂(s)

Yθ̂(s)+λL(t)

)
, ŜU (t) =

∏
s≤t

(
1− ∆Nθ̂(s)

Yθ̂(s)+λU (t)

)
;

26 return SCBi(t) =
[
ŜL

(
t−µ̂i

σ̂i

)
, ŜU

(
t−µ̂i

σ̂i

)]
;
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Algorithm 2: Bootstrap LR SCBs for the base survival function II
Data: Sample Xij , Cij , failure and censor times, respectively i = 1, 2,

j = 1, 2, · · · , ni
Result: Simultaneous confidence bands SCBi(t), i = 1, 2

1 Step 1: Estimate location and scale parameters;
2 for i ∈ {1, 2} do

3 Obtain Z̃ij = min (Xij , Cij), δ̃ij = 1 (Xij ≤ Cij) ;

4 Compute Kaplan–Meier estimator Ŝi(t) from (Z̃ij , δ̃ij);

5 Compute jumps ∆Ŝi(tj) at uncensored times;

6 Estimate µ̂i = −
∑ni

j δ̃ijZ̃ij∆Ŝi(Z̃ij), ψ̂i = −
∑ni

j δ̃ijZ̃
2
ij∆Ŝi(Z̃ij),

σ̂2i = ψ̂i − µ̂2i ;

7 Step 2: Standardize and pool samples;
8 For each sample i = 1, 2, set Uij = (Xij − µ̂i)/σ̂i and Vij = (Cij − µ̂i)/σ̂i;
9 Obtain pooled failure and censor time each of size n = n1 + n2

U = (U11, U12, · · · , U1n1 , U21, U22, · · · , U2n2)
⊤,

V = (V11, V12, · · · , V1n1 , V21, V22, · · · , V2n2)
⊤;

10 Form pooled data: Wj = min(Uj ,Vj), δj = 1(Uj ≤ Vj)), j = 1, 2, · · · , n;
11 Compute pooled KM estimator Ŝθ̂(t) from (Wj , δj);

12 Store ordered failure times T(j), Ŝθ̂
(
T(j)

)
, Yθ̂

(
T(j)

)
, ∆Nθ̂

(
T(j)

)
, j = 1, 2, · · · , k;

13 Compute wn(t) :=
σ̂2
θ̂
(t)

1+σ̂2
θ̂
(t)

where σ̂2
θ̂
(t) is defined on (2.15) ;

14 Step 3: Bootstrap critical value computation;
15 for b = 1, . . . , B do
16 for i ∈ {1, 2} do
17 Sample indiced from original data to obtain bootstrap samples(

X∗
ij , C

∗
ij

)
;

18 Obtain Z̃∗
ij = min

(
X∗

ij , C
∗
ij

)
, δ̃∗ij = 1

(
X∗

ij ≤ C∗
ij

)
;

19 Compute Kaplan–Meier estimator Ŝ∗
i (t) from (Z̃∗

ij , δ̃
∗
ij);

20 Compute jumps ∆Ŝ∗
i (tj) at uncensored times;

21 Estimate µ̂∗i = −
∑ni

j δ̃∗ijZ̃
∗
ij∆Ŝ

∗
i (Z̃ij), ψ̂

∗
i = −

∑ni
j δ̃∗ijZ̃

2∗
ij ∆Ŝ

∗
i (Z̃

∗
ij),

σ̂2∗i = ψ̂∗
i − µ̂∗2i ;

22 Compute Ŝ
∗(b)
θ̂

(t), Y
∗(b)
θ̂

(t), and ∆N
∗(b)
θ̂

(t);

23 Solve for λ̂∗(b)(t) from
∏

s≤t

(
1−

∆N
∗(b)
θ̂

(s)

Y
∗(b)
θ̂

(s)+λ

)
= Ŝθ̂(t);

24 Evaluate test statistic L∗(b)(t) = −2wn(t)
∑

s≤t

[
(Y

∗(b)
θ̂

(s)−

∆N
∗(b)
θ̂

(s)) log

(
1 + λ

Y
∗(b)
θ̂

(s)−∆N
∗(b)
θ̂

(s)

)
− Y

∗(b)
θ̂

(s) log

(
1 + λ

Y
∗(b)
θ̂

(s)

)]
;

25 Store maxt L∗(b)(t);

26 Compute the 95th percentile of {maxt L∗(b)(t)}Bb=1 as qLRθ̂
;

27 Step 4: Construct simultaneous confidence bands;

28 for each t ∈ [Tα, T1−α], where Tα is the α− th percentiles of
{
T(j)

}n
j=1

do

29 Solve L(S(t), t) = qLRθ̂
/wn(t) for λL(t) and λU (t) using Brent’s method;

30 Compute ŜL(t) =
∏

s≤t

(
1− ∆Nθ̂(s)

Yθ̂(s)+λL(t)

)
, ŜU (t) =

∏
s≤t

(
1− ∆Nθ̂(s)

Yθ̂(s)+λU (t)

)
;

31 return SCBi(t) =
[
ŜL

(
t−µ̂i

σ̂i

)
, ŜU

(
t−µ̂i

σ̂i

)]
;
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Remark As mentioned in the Introduction, for each uncensored time point t in the
pooled ordered sample, L(S(t), t),the scaled log LR, is set equal to the critical value
obtained by the bootstrap scaled by the reciprocal of a weight function wn(t). From
Eq. (2.13), L(S(t), t), considered as a function of λ, is 0 at 0, decreasing for λ < 0
and increasing for λ > 0. It follows that there are two values of λ where L(S(t), t)
equals the bootstrap critical value. These can be obtained by the Brent’s method of
root finding. The two values of λ are substituted into the LHS of Eq. (2.14) to yield
a bracket for S(t).
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CHAPTER 3

SIMULATIONS

In this section, we report the results of various simulation studies we conducted
to evaluate the finite-sample performance of the LS-based SCBs. The goal is to
examine how well the theoretical properties derived in the previous section hold in
practice and to compare the performance of our method with the HMY SCBs. We
considered three scenarios.

Scenario 1 (Normal family) The failure times were generated from the
normal family of distributions with means µi and standard deviations σi, i = 1, 2.
The censoring times were also normally distributed, with means µc1 = µ1 + 3 and
µc2 = µ2 + 1, and standard deviations σc1 = σ1 + 3 and σc2 = σ2 + 1. These choices
yield censoring rates of approximately 23% and 42% for the two samples respectively.

Scenario 2 (Exponential family) The base distribution was exponential with
rate λ = 3. These were scaled by σi and shifted by µi to obtain the failure times for
the two samples. Likewise scaling the base exponential by σi and shifting thereafter
by µ1 + 3 and µ2 respectively, the censoring times were obtained. These settings
produced censoring rates of approximately 7% for sample 1 and 50% for sample 2.

Scenario 3 (Extreme value distribution (EVD)) The failure times follow
shifted and scaled extreme value distributions with location parameters µi and scale
parameters σi, i = 1, 2. The censoring times are generated from the same family
of distributions, with locations µ1 + 2 and µ2 + 1, and scales σ1 + 3 and σ2 + 2.
The resulting censoring rates are approximately 25% and 37% for samples 1 and 2
respectively.

We first followed Algorithm 1 to obtain the SCBs for all the three scenarios
described above. Critical values were estimated from B = 1000 bootstrap samples.
The empirical coverage probability (ECP) is the proportion of M = 1000 replications
that yielded SCBs which included the true survival curve over the entire interval
[t1, t2], where in each case t1 and t2 represent the 10-th and the 90-th percentile,
respectively. The ECPs for the various scenarios and various censoring rates (CRs)
are summarized in Table 3.1.
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Table 3.1: Empirical coverage probabilities (ECPs) of proposed 95% SCBs

Baseline distribution n1 = n2 θ1 = (−3, 1)⊤ θ2 = (5, 2)⊤

Gaussian
25 0.968 0.966
50 0.951 0.953
100 0.948 0.948

CR 23% 42%

Exp(λ = 3)
25 0.940 0.942
50 0.948 0.945
100 0.950 0.949

CR 7% 45%

Extreme Value
25 0.930 0.930
50 0.946 0.948
100 0.950 0.951

CR 25% 37%

The estimated average enclosed area (EAEA) is defined as

EAEA =
1

M

M∑
i=1

 ∑
j:xj∈[t1,t2]

lj∆xj

 ,

where lj is the width of the band at the uncensored time xj,∆xj = xj+1 − xj. The
percentage reduction in EAEA of the proposed relative to the HMY SCBs are reported
in Table 3.2.

Table 3.2: Percent reduction in EAEA of proposed relative to the HMY SCBs

Baseline distribution n1 = n2 θ1 = (−3, 1)⊤ θ2 = (5, 2)⊤

Gaussian
25 28.00 80.55
50 20.63 80.53
100 22.46 81.11

CR 23% 42%

Exp(λ = 3)
25 23.90 72.24
50 25.83 70.45
100 31.25 71.66

CR 10% 45%

Extreme Value
25 28.57 79.01
50 26.16 80.07
100 28.01 80.55

CR 25% 37%

On the basis of Tables 1 and 2, it is clear that leveraging the LS framework
yields narrower SCBs, with correct nominal 95% coverage. The reduction in the
areas captured by the proposed SCBs is significant and can be up to 80%. Therefore,
it is very conceivable that such improvements would manifest in the case of SCBs
based on two samples as well. Those will be the focus of our continuing research.
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In Figs 3.1 – 3.3, we show some sample SCBs obtained using the two algorithms.

(a) n = 25 (b) n = 50 (c) n = 100

Figure 3.1: Sample SCBs for N(0, 1) with 10% CR using Algorithm 1

(a) n = 25 (b) n = 50 (c) n = 100

Figure 3.2: Sample SCBs for Exponential(λ = 3) with 30% CR using Algorithm 1

(a) n = 25 (b) n = 50 (c) n = 100

Figure 3.3: Sample SCBs for EVD(5, 2) with 45% CR using Algorithm 2
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In Table 3.3 and Table 3.4, we present ECPs and EAEAs obtained using
Algorithm 2.

Table 3.3: ECPs of proposed 95% SCBs for different CRs using Algorithm 2

Baseline distribution n1 = n2 θ1 = (−3, 1)⊤ θ2 = (5, 2)⊤

Gaussian
25 0.956 0.965
50 0.945 0.940
100 0.949 0.951

CR 23% 42%

Exp(λ = 3)
25 0.940 0.942
50 0.945 0.943
100 0.955 0.954

CR 7% 45%

Extreme Value
25 0.938 0.930
50 0.945 0.955
100 0.956 0.951

CR 25% 37%

Table 3.4: Percent reduction in EAEA relative to the HMY SCBs using Algorithm 2

Baseline distribution n1 = n2 θ1 = (−3, 1)⊤ θ2 = (5, 2)⊤

Gaussian
25 21.06 78.67
50 21.61 80.65
100 22.82 88.06

CR 23% 42%

Exp(λ = 3)
25 25.55 71.05
50 32.48 71.78
100 31.78 72.15

CR 10% 45%

Extreme Value
25 28.95 79.18
50 27.32 80.46
100 28.15 73.59

CR 25% 37%

In addition, we considered the performance of the proposed SCBs when the LS
assumption was violated. For the first sample, the failure times were of the form
X1 = µ1 + σ1Y where Y =

√
1−∆2Z1 + ∆ |Z2|, where ∆ ∈ [0, 1] and Z1 and Z2

are two independent copies of the standard normal distribution. The failure times
for the second sample were generated from the normal distribution with mean µ2

and standard deviation σ2
2. The censoring times were also normally distributed, with

means µc1 = µ1 + 3 and µc2 = µ2 + 1, and standard deviations σc1 = σ1 + 3 and
σc2 = σ2 + 1. These choices yield censoring rates of approximately 23% and 24% for
the two samples respectively. For ∆ = 0.05 and ∆ = 0.1, X1 does not belong to an
LS family. In fact, there is significant misspecification. The proposed approach gave
ECPs close to the nominal level of 95% for small sample sizes (25 and 50) but the
ECPs degraded for sample size 100.
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Table 3.5: ECPs of proposed 95% SCBs for mispecification study using Algorithm 2

Baseline distribution n1 = n2
∆

0.05 0.1

Skewed Normal
25 0.952 0.946
50 0.938 0.930
100 0.934 0.916

CR 23% 24%

Table 3.6: Percent reduction in EAEA of proposed relative to the HMY SCBs using
Algorithm 2

Baseline distribution n1 = n2
∆

0.05 0.1

Skewed Normal
25 -4.76 -4.98
50 -1.80 -1.82
100 -1.45 -1.55

CR 23% 24%
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CHAPTER 4

CONTINUING RESEARCH

The research proposed will be continued to obtain SCBs for the ratio and
difference of two survival functions. The procedure is briefly outlined in the following
subsections.

4.1 SCBs for the ratio of survival functions
Consider the LS framework Wj = min (Uj, Vj) and δj = 1 (Uj ≤ Vj), where

Uj and Vj, j = 1, 2, · · · , n, are the pooled standardized failure and censored times
respectively. For any two survival functions S̃1 and S̃2 having membership in an LS
family with base survival function S̃, note that

φ̃(t) :=
S̃1(t)

S̃2(t)
= S̃

(
t− µ̃1

σ̃1

)/
S̃

(
t− µ̃2

σ̃2

)
. (4.1)

With focus on the given pair S1 and S2 having base distribution S, the true ratio is

φ(t) =
S1(t)

S2(t)
= S

(
t− µ1

σ1

)/
S

(
t− µ2

σ2

)
.

To build SCBs for φ(t), the LR when θ̃ is known is (cf. McKeague and Zhao, 2002)

R(φ̃(t), t) =
sup

{
L(S̃) : S̃ ∈ Γ and Eq. (4.1) holds

}
sup {L(K) : K ∈ Γ} .

(4.2)

The survival function that maximizes the constrained likelihood in the numerator
of Eq. (4.2) is discrete, supported on the uncensored time points in the pooled data and
is parameterized through discrete hazards λj, j = 1, . . . , k, one for each uncensored
point (see, for example, Kalbfleisch and Prentice, 2002). The pooled data is arranged
in a sequence of uncensored points from the smallest to the largest, with each tj,
a distinct uncensored time point, having its associated dj, “the number of events
(deaths)” and rj, the number who are at risk at the time point “just before“ tj. For
the moment assume that θ is known. With λθ ≡ λ without subscript denoting the
LM, the objective function for the numerator of Eq. (4.2) is

H(λj, λ) =
k∑

j=1

{dj log λj + (rj − dj) log (1− λj)}

+ λ

 ∑
j:uj≤

t−µ1
σ1

log (1− λj)−
∑

j:uj≤
t−µ2
σ2

log (1− λj)− logφ(t)


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It follows that

H(λj, λ) =
k∑

j=1

{dj log λj + (rj − dj) log (1− λj)}

+ λ

 ∑
j:min

(
t−µ1
σ1

,
t−µ2
σ2

)
≤uj≤max

(
t−µ1
σ1

,
t−µ2
σ2

) log (1− λj)− logφ(t)


Let B(t) = #{j : Uj ≤ t}. Let ui = (t − µi)/σi, i = 1, 2. Write a(t) =
min (B(u1(t)), B(u2(t)) and b(t) = max (B(u1(t)), B(u2(t)). Working as in McKeague
and Zhao (2002), with the estimated standardized and pooled data, it can be shown
that the plug-in scaled log LR is

L (φ̃(t), t) = −2
∑

a(t)≤s≤b(t)

[
(Yθ̂(s)−∆Nθ̂(s)) log

(
1 +

λθ̂(t)

Yθ̂(s)−∆Nθ̂(s)

)

−Yθ̂(s) log
(
1 +

λθ̂(t)

Yθ̂(s)

)]
(4.3)

where λθ̂(t) satisfies ∏
a(t)≤s≤b(t)

(
1−

∆Nθ̂(s)

Yθ̂(s) + λθ̂(t)

)
= φ(t). (4.4)

Interestingly, Eqs. (4.3) and (4.4) are generalized versions of Eqs. (2.13) and (2.14). If
a(t) = 0 and b(t) = t, then Eqs. (2.13) and (2.14) ensue. As in Eqs. (2.13) and (2.14),
all quantities are indexed by estimated means and standard deviations. If those
were replaced by their true values one obtains the generalized HMY counterparts. In
particular, λ̂θ̂(t) is a perturbed version of λ̂θ ≡ λ̂.

4.2 Confidence Bands for the Difference of Survival Functions
Consider the LS framework Wj = min (Uj, Vj) and δj = 1 (Uj ≤ Vj), where

Uj and Vj, j = 1, 2, · · · , n, are the pooled standardized failure and censored times
respectively. Let B(t) = #{j : Uj ≤ t}. Simultaneous confidence bands for the
difference D0(t) = S1(t)− S2(t) of survival functions will be obtained by considering
the LR (Shen and He, 2006)

R(S(t), t) =
sup {L(S1, S2) : S1(t) = D0(t) + η(t), S2(t) = η(t), S1, S2 ∈ Θ}

L(Ŝθ̂)
(4.5)
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Using the Lagrange multiplier, we want to optimize the function

H(λj, λ
(1)
θ , λ

(2)
θ ) =

n∑
j=1

{(rj − dj) log (1− λj) + dj log (λj)}

+ λ
(1)
θ

B(u1(t))∑
j=1

log (1− λj)− log(D0 + η)


+ λ

(2)
θ

B(u2(t))∑
j=1

log (1− λj)− log(η)


An iterative solution of η, the nuisance parameter, will be obtained and, in turn,
of the two LMs. The algorithm for SCBs will flow from these estimates and the
bootstrap.

4.3 Numerical results
Extensive studies that will illustrate the power of the proposed methods’ ability

to capture the correct coverage probability will be undertaken. Furthermore the
percent reduction in the EAEAs relative to the nonparametric methods will be
obtained. Studies that will monitor the price of possible misspecification will be
carried out. Finally the methods will be illustrated using publicly available data sets
from biomedical and other public health studies.

4.4 Validity of the bootstrap
That the bootstrap produces correct thresholds for computing the SCBs will be

proved. This is the asymptotic validity of the bootstrap.
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APPENDIX A

APPENDIX

Lemma 1. Suppose S0 is continuous and that for [t1, t2] ⊂ (0, τH ],

Ψ(t1) := − logS(t1) > ϵ

for some ϵ > 0. Then ∥∥∥λ̂θ̂∥∥∥t2
t1
= o

(
(n log n)1/2

)
a.s. (A.1)

Proof. We follow the exact steps in the proof of lemma 2.2 of Li (1996) to get
− logS(t) = Ψ(t) ≥ Ψ̂θ̂(t) and

∣∣∣λ̂θ̂∣∣∣ ≤
n
(
Ψ(t)− Ψ̂θ̂(t)

)
Ψ(t)

. (A.2)

Nestor and Subramanian (2025) obtained a large-sample representation for Â(s) =
F̂θ̂(s) − F (s), see their Eq. (2.6). Specifically, ∥Â∥t2t1 = o((n/ log n)−1/2) a.s. because
each centered expression on the RHS of their Eq. (2.6) admits that rate, uniformly in
t ∈ [t1, t2].

The Duhamel equation applied to Ŝθ̂ −S (see p. 1535, Gill and Johansen, 1990)
gives

Ŝθ̂(t)− S(t)

S(t)
= −

∫
(0,t]

Ŝθ̂(s−)

S(s)
d{Ψ̂θ̂(s)−Ψ(s)}.

It follows that

Ψ̂θ̂(t)−Ψ(t) = −
Ŝθ̂(t)− S(t)

S(t)
−
∫
(0,t]

(
Ŝθ̂(s−)

S(s)
− 1

)
dΨ̂θ̂(s) +

∫
(0,t]

(
Ŝθ̂(s−)

S(s)
− 1

)
dΨ(s)

≤
∥Ŝθ̂ − S∥t2t1
S(t2)

(
1 + Ψ̂θ̂(t2) + Ψ(t2)

)
.

Therefore, ∥Ψ̂θ̂−Ψ∥t2t1 = o((n/ log n)−1/2) a.s. Inequality (A.2) then implies Eq. (A.1).

When λ̂θ̂,0(t) > 0 for t ∈ [t1, t2], we follow the steps leading to Eq. (2.13) on
page 101 of Li (1996) to get

log Ŝθ̂(t) + Ψ̂θ̂(t)− logS(t) ≤ Ψ̂θ̂(t)

(
n

n+ |λ̂θ̂|

)
.
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The strong uniform consistency of Ψ̂θ̂ and Ŝθ̂ is clear from Eq. (A.6) of Nestor and
Subramanian (2025). Following the steps in the proof of Lemma 1 of Subramanian
(2016) leads us to conclude that for large n

|λ̂θ̂| ≤
n
(
logS0(t)− log Ŝθ̂(t)

)
Ψ̂θ̂(t) + log Ŝθ̂(t)− logS(t)

≤
n1/2

∥∥∥n1/2
(
logS(t)− log Ŝθ̂(t)

)∥∥∥t2
t1

Ψ(t1)− ϵ
.

A Taylor expansion and the strong uniform consistency rate for Ŝθ̂ implies Eq. (A.1),
completing the proof.

Lemma 2. Under the conditions of Lemma 1, uniformly for t ∈ [t1, t2] ⊂ [0, τH ],

λ̂θ̂(t) = − n

σ̂2
θ̂

(
log Ŝθ̂(t)− logS(t)

)
+ oP(logN).

Proof. From Eq. (2.14), with K(t) = S(t), the LM estimate λ̂θ̂(t) satisfies

f(λ̂θ̂(t)) = log S(t), where f(λ) :=
∑
s≤t

log

(
1−

∆Nθ̂(s)

Yθ̂(s) + λ

)
.

Taylor expansion of f(λ̂θ̂(t)) about 0 gives

f(λ̂θ̂(t)) = f(0) + λ̂θ̂(t)f
′(0) +

(λ̂θ̂(t))
2

2
f ′′(η(t)),

where |η(t)| ≤ |λ̂θ̂(t)|. Note that f(0) = log Ŝθ̂(t). Note also that f ′(0) = (σ̂θ̂(t))
2/n,

where

σ̂θ̂(t) = n
∑
s≤t

∆Nθ̂(s)

Yθ̂(s) (Yθ̂(s)−∆Nθ̂(s))
(A.3)

Then

logS0(t) = log Ŝθ̂(t) + λ̂θ̂(t)
(σ̂θ̂(t))

2

N
+

(λ̂θ̂(t))
2

2
f ′′(η(t)).

Hence,

λ̂θ̂(t) = − n

(σ̂θ̂(t))
2

{(
log Ŝθ̂(t)− logS(t)

)
+

(λ̂θ̂(t))
2

2
f ′′(η(t))

}
. (A.4)

It remains to show f ′′(η(t)) = OP(n
−2) uniformly for t ∈ [t1, t2], and then apply

Lemma (2). Note that

f ′′(η) = −
∑
s≤t

∆Nθ̂(s)(2[Yθ̂(s) + η(t)]−∆Nθ̂(s))

(Yθ̂(s) + η −∆Nθ̂(s))
2(Yθ̂(s) + η)2

.
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Note that we consider only [t1, t2] ⊂ (0, τH ], where τH is such that 1 − H(τH) > 0.
Choose ϵ > 0 so that ϵ < 1−H(τH) < 1−H(τH−). Since n−1 (Yθ̂(τH)−∆Nθ̂(τH))

a.s.−→ 1−
H(τH), we conclude that, for large n,

1

n

[
Yθ̂(τH)−∆Nθ̂(τH)

]
> ϵ. (A.5)

For s ≤ t ≤ τH , we have that Yθ̂(t)−∆Nθ̂(t) ≥ Yθ̂(s)−∆Nθ̂(s). Therefore

Yθ̂(s)−∆Nθ̂(s) ≥ Yθ̂(τH)−∆Nθ̂(τH). (A.6)

Furthermore, from |η(t)/n| < ϵ for all t ∈ [t1, t2] when n is large. It follows from
inequalities (A.5) & (A.6) that

Yθ̂(s)−∆Nθ̂(s) + η(t) > Yθ̂(τH)−∆Nθ̂(τH)− nϵ > 0.

Because
∑

s≤t ∆Nθ̂(s) ≤ n, we have

|f ′′(η(t))| ≤
n
(
2
(
n+ supt∈[t1,t2] |η(t)|

)
+ n
)

(Yθ̂(τH)−∆Nθ̂(τH)− nϵ)2 (Yθ̂(τH)− nϵ)2
= OP(n

−2).

By Lemma (1), therefore, the dominant part of the remainder term in Eq. (A.4),
N(λ̂θ̂(t))

2f ′′(η(t)), is oP(n
2 log n)OP(n

−2) = oP(log n) which completes the proof.

Proof of Theorem 1

Recall from Eq. (2.13) that L (S(t), t), the scaled log LR, is

−2
∑
s≤t

{
(Y (s)−∆N(s)) log

(
1 +

λ̂θ̂(t)

Y (s)−∆N(s)

)
− Y (s) log

(
1 +

λ̂θ̂(t)

Y (s)

)}
,

where λ̂θ̂(t) satisfies Eq. (2.14) with K(t) replaced by S(t). Following Li (1996), apply
log(1 + x) = x− x2/2 + x3/3− x4/4 +O(x5) as x→ ∞, to obtain

−2 logL (S(t), t) = λ̂2
θ̂
(t)
∑
s≤t

{
1

Yθ̂(s)−∆Nθ̂(s)
− 1

Yθ̂(s)

}

− 2

3
λ̂3
θ̂
(t)
∑
s≤t

{(
1

Yθ̂(s)−∆Nθ̂(s)

)2

−
(

1

Yθ̂(s)

)2
}

+
1

2
λ̂4
θ̂
(t)
∑
s≤t

{(
1

Yθ̂(s)−∆Nθ̂(s)

)3

−
(

1

Yθ̂(s)

)3
}

+OP
(
n−1/2

)
:= A1(t) + A2(t) + A3(t) + oP(1) (A.7)
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Applying Lemma 2, we have

A1(t) =
σ̂2
θ̂
(t)

n
λ̂2
θ̂
(t)

=
σ̂2
θ̂
(t)

n

{
− n

σ̂2
θ̂
(t)

(
log Ŝθ̂(t)− logS(t)

)
+ oP(log n)

}2

=
1

σ̂2
θ̂
(t)

{
n1/2

(
log Ŝθ̂(t)− logS(t)

)}2

+ oP

(
log n

n1/2

)
,

which leads to the RHS of Eq. (2.16). We now show that A2(t) and A3(t) are
asymptotically negligible.

As in Li (1996), we have

||A2(t)||t2t1 ≤ 2

3

(
||λθ̂(t)||

t2
t1

)3( 1

Yθ̂(t2)−∆Nθ̂(t2)
+

1

Yθ̂(t2)

)
×
∑
s≤t2

(
1

Yθ̂(s)−∆Nθ̂(s)
+

1

Yθ̂(s)

)
.

Apply Lemma 1 to obtain

||A2(t)||t2t1 = oP

(
(n log n)3/2

)
OP
(
n−1
) σ̂2

θ̂
(t2)

n

= oP

(
(log n)3/2

n1/2

)
= oP(1).

The summation term of A3(t) can be bounded above by(
1

(Yθ̂(t2)−∆Nθ̂(t2))
2 +

1

Yθ̂(t2) (Yθ̂(t2)−∆Nθ̂(t2))
+

1

Y 2(t2)

)
σ̂2
θ̂
(t2)

n

which is OP

((
1
n

)2)
OP
(
1
n

)
. By Lemma 1, it follows that

||A3(t)||t2t1 = oP
(
(n log n)2

)
OP
(
n−2
)
OP(n

−1)

= oP

(
(log n)2

n

)
= oP(1).

This completes the proof of Theorem 1.
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